Molecular aggregation of alkyltrimethylammonium bromide and alcohol. Discrimination of primary and secondary alcohols

Koichi Tanaka, Kenichi Tamura and Fumio Toda*
Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790, Japan

Alkyltrimethylammonium bromide (alkyl = decyl, dodecyl, tetradecyl, hexadecyl and octadecyl) and primary alcohol $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{OH}(n=8-18)$ aggregated and formed $1: 1$ complex crystals which show clear melting points; an ammonium bromide and alcohol of similar alkyl chain length formed a complex with the highest melting point; since secondary alcohols did not complex with the ammonium bromide, the primary alcohol was isolated from a mixture

Previously, we have reported that tetraalkylammonium halide and phenol derivatives aggregate and give a $1: 1$ complex through hydrogen bond formation between the halide ion of the ammonium salt and the OH group of the phenol. ${ }^{1}$ In the complexation, molecular discrimination occurred and separation of a phenol isomer was accomplished. ${ }^{1}$ When the ammonium salt was optically active, chiral discrimination occurred and optical resolution of the phenol derivative was achieved. For example, by complexation of rac-2,2'-dihydroxy-1,1'-binaphthyl with cinconidinium chloride, the former was resolved efficiently. ${ }^{2}$ In this case, a hydrogen bond between the acidic OH group of the naphthol derivative and the Cl^{-}of the cinconidinium salt play an important role in the molecular aggregation. ${ }^{3}$

Recently, we found that primary alcohol $\mathrm{C}_{m} \mathrm{H}_{2 m+1} \mathrm{OH}$ (2) with a long alkyl chain ($m=8-18$) also aggregates together with alkyltrimethylammonium bromide $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{~N}^{+} \mathrm{Me}_{3} \cdot \mathrm{Br}^{-}$ (1) with a long alkyl chain ($n=10,12,14,16,18$) and forms a 1:1 complex which shows a clear melting point (Table 1).

\[

\]

For example, when a solution of hexadecyltrimethylammonium bromide ($\mathbf{1 d}$) ($0.66 \mathrm{~g}, 2.7 \mathrm{mmol}$) and hexadecanol (2i) ($1 \mathrm{~g}, 2.7 \mathrm{mmol}$) in acetone $\left(10 \mathrm{~cm}^{3}\right)$ was kept at room temperature for 12 h , a $1: 1$ complex of these was formed as colourless plates ($0.8 \mathrm{~g}, 48 \%$ yield, $\mathrm{mp} 98^{\circ} \mathrm{C}$). The IR spectrum of the complex in a Nujol mull showed a sharp $v(\mathrm{OH})$ absorption at relatively high frequency, $3350 \mathrm{~cm}^{-1}$. The data suggest that hydrogen bonding between the OH group of 2 i and the Br^{-}of 1 d is weak, if it exists at all, and that the hydrophobic interaction between alkyl groups of $\mathbf{1}$ and $\mathbf{2}$ is more important. A sharp and strong $v(\mathbf{C}-\mathrm{O})$ absorption of $\mathbf{2 i}$ itself at 1065 cm^{-1} (Nujol mull) became a weak absorption at $1050 \mathrm{~cm}^{-1}$ (Nujol mull) by the formation of the complex, probably due to a spacial restriction of the $\mathrm{C}-\mathrm{O}$ stretch in the complex crystal. In other words, 1d and $\mathbf{2 i}$ molecules are too tightly aggregated in the complex crystal to stretch the $\mathrm{C}-\mathrm{O}$ bond freely.

When the alkyl chain length, n, of the ammonium salt 1 is the same or close to that, m, of the alcohol 2 , their complex showed the highest melting point (Table 1, Fig. 1) and was the most stable (Fig. 2). Ammonium salts with a relatively long alkyl chain, lcee, did not complex with an alcohol with a relatively short alkyl chain, 2a-c, respectively (Table 1). It is also

Table 1 Melting point $\left({ }^{\circ} \mathrm{C}\right)^{a}$ of $1: 1$ complexes of 1 and 2

$\mathbf{2}$	$\mathbf{1 a}$	$\mathbf{1 b}$	$\mathbf{1 c}$	$\mathbf{1 d}$	$\mathbf{1 e}$
$\mathbf{2 a}$	78	79	b	b	b
$\mathbf{2 b}$	80	77	81	b	b
$\mathbf{2 c}$	81	87	87	80	b
$\mathbf{2 d}$	82	87	88	88	83
$\mathbf{2 e}$	81	88	91	92	89
$\mathbf{2 f}$	76	88	92	94	94
$\mathbf{2 g}$	75	87	93	100	98
$\mathbf{2 h}$	73	84	93	98	100
$\mathbf{2 i}$	72	82	93	98	103
$\mathbf{2 j}$	72	82	90	99	101
$\mathbf{2 k}$	75	83	89	96	102

${ }^{a}$ Measured by DSC. ${ }^{b}$ No complexation occurred.

Fig. 1 Melting point $\left({ }^{\circ} \mathrm{C}\right)$ of $1: 1$ complexes of 1 d and $2 \mathbf{c}-\mathbf{k}$
interesting that octyltrimethylammonium bromide did not complex with 2a-k. The ammonium salt 1d ($m=16$) formed complexes of relatively high melting point with an alcohol having a similar alkyl chain length $\mathbf{2 g}-\mathrm{j}$ ($n=14-17$) (Fig. 1). Of the dissociation energy, ΔH, of $1: 1$ complexes of 1 d with $\mathbf{2 c} \mathbf{- k}$, obtained from DSC data, that for the complex of $\mathbf{1 d}$ ($m=16$) with the alcohol $2 \mathbf{j}(n=17)$ which have similar alkyl chain lengths was the largest (Fig. 2). Mutual arrangement of molecules $\mathbf{1}$ and $\mathbf{2}$ of the same or similar alkyl chain length would form the most stable crystalline lattice of the complex.

Fig. 2 Dissociation energy, ΔH, of $1: 1$ complexes of $1 d$ and $2 \mathbf{c}-\mathbf{k}$

However, neither mp nor ΔH values of the complex are related to whether the alkyl chain of $\mathbf{1}$ or $\mathbf{2}$ has an odd or even number of methylene units.

By using the molecular recognition between 1 and 2, separation of alcohol isomers can be achieved. When a solution of $1 \mathrm{~b}(404 \mathrm{mg})$ and a mixture of $2 \mathrm{e}(494 \mathrm{mg})$ and heptanol (402
mg) in acetone ($4 \mathrm{~cm}^{3}$) was kept at room temperature for 1 h , a $1: 1$ complex of $\mathbf{1 b}$ and $\mathbf{2 e}(170 \mathrm{mg}, 31 \%$ yield) was formed as colourless prisms. Heating the complex in vacuo gave $2 \mathbf{e}(97 \%$ purity by distillation, $70 \mathrm{mg}, 22 \%$ yield). Application of the molecular recognition to a separation of primary and secondary alcohols is also successful. When a solution $\mathbf{1 b}(320 \mathrm{mg})$ and a $1: 1$ mixture of $\mathbf{2 g}$ and tetradecan-2-ol (660 mg) in acetone (4 cm^{3}) was kept at room temperature for 1 h, a $1: 1$ complex of 1 b and $\mathbf{2 g}$ was obtained as colourless prisms ($170 \mathrm{mg}, 31 \%$ yield). Heating the complex in vacuo gave $\mathbf{2 g}(97 \%$ purity by distillation, $70 \mathrm{mg}, 22 \%$ yield). The purity of 2 e and 2 g was determined by GC.

We thank the Ministry of Education, Science and Culture, Japan, for a grant-in-aid for Scientific Research on Priority Areas, No. 06242105.

References

1 F. Toda, K. Tanaka, T. Okada, Su. A. Bourne and L. R. Nassimbeni, Supramol. Chem., 1994, 3, 291.
2 K. Tanaka, T. Okada and F. Toda, Angew. Chem., Int. Ed. Engl., 1993, 32, 1147.
3 F. Toda, K. Tanaka, Z. Stein and I. Goldberg, J. Org. Chem., 1994, 59, 5748.

Paper 5/02936H
Received 9th May 1995
Accepted 25th May 1995

